If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5m^2+44m+32=0
a = 5; b = 44; c = +32;
Δ = b2-4ac
Δ = 442-4·5·32
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-36}{2*5}=\frac{-80}{10} =-8 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+36}{2*5}=\frac{-8}{10} =-4/5 $
| 3/2*255=x | | 4(3x-9=0 | | 50+2x=60+x | | 1112g=12(32g−1)+11 | | x2=361-1 | | 55=15x+10 | | 2b+7=18b | | 5w=3 | | 8s-46=3s+42+s+7 | | 229n=418 | | -15x-15=4(-x-2x) | | -3(3p+2)-2(1-8p)=3(9+2p) | | 64=4b+5 | | 9v-5v=8 | | 22z+41=23z+z+32 | | 3.2x=81/1 | | 5(x-1)+7=3x+2x | | p-3/7=2 | | 3(z-5)=-5 | | x-20=54+2 | | -16=x=-15 | | Y=-8+-2x+x^2 | | w+48=w+10+2w-2 | | 0.50x+0.75=15x+20 | | -4+5y=8 | | -3(2x-4)=-2(3x-5) | | (a-5)*(a-5)=0 | | 5x+3-4x=8 | | 2(x-7)=-2x+14 | | a=a-45+a-35 | | 6(3x+2)=x+12 | | 2x=3+x=10 |